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Abstract: Precise prediction of a cyclone track with wind speed, pressure, landfall point, and the
time of crossing the land are essential for disaster management and mitigation, including evacuation
processes. In this paper, we use an artificial neural network (ANN) approach to estimate the cyclone
parameters. For this purpose, these parameters are obtained from the International Best Track Archive
for Climate Stewardship (IBTrACS), from the National Oceanic and Atmospheric Administration
(NOAA). Since ANN benefits from a large number of data points, each cyclone track is divided into
different segments. We use past information to predict the geophysical parameters of a cyclone. The
predicted values are compared with the observations.

Keywords: cyclone prediction; artifical neural networks; land crossing point; mean distance error;
scatter index

1. Introduction

A tropical cyclone (TC) is one of the deadliest and most damaging natural disasters
affecting people, livestock, agriculture, and the economics of coastal areas. Reductions in
uncertainty are of great benefit for disaster-management authorities to plan for evacuation
and mitigation processes [1,2]. The major components of cyclone warnings are forecasts
of the track, winds, and pressure, in addition to a precise landfall point with the time of
crossing the land. Predicting the track of a cyclone helps in knowing the direction in which
it is moving and the area it is likely to affect. The intensity is primarily estimated from the
maximum sustained wind speed, which provides a measure for the severity of a cyclone.
The wind is one of the major hazards associated with a TC, as it creates damage to houses,
bridges, electrical poles, mangroves, and the ecosystem. While the damage in the coastal
region is typically quite high, inland damage cannot be ruled out. Strong winds are present
at the eyewall of a cyclone. The intensity of a cyclone together with the wind speed and
the pressure aids in predicting the storm surge, although the spatial extent of the storm
and the direction of travel are also important in the prediction process [3,4]. A storm surge
is the most devastating component of cyclones, particularly along coastlines that have a
highly varying bathymetry, which are plentiful in India. Since bathymetry is one of the
most critical components in estimating a storm surge, even a slight error in predicting the
landfall point can lead to different storm-surge heights. The time of crossing the land is
used to include the impacts of tides and to help in arranging the evacuation process. Thus,
location, winds, and the pressure of a cyclone, as well as the landfall point and the time of
land crossing, are the critical components in predicting the storm surge.

Several dynamiccal, statistical, and statistical–dynamic models have been developed
to predict cyclone parameters. Mohanty and Gupta [5] and Gupta [6] summarised dif-
ferent track-prediction techniques. Bell [7] described the operational forecasting models.
Ali et al. [8] summarised the different approaches used in predicting cyclones. They used
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the Artificial Neural Network (ANN) technique to predict the position of a cyclone alone,
in terms of the latitude and longitude using the previous 12 h of observations. In this paper,
we attempt to use the same technique to predict winds, pressure, and landfall, in addition
to the storm location in terms of latitude and longitude.

ANN is a powerful data-mining tool for computing input–output relationships. It is
an information-processing paradigm that works somewhat like a hypothesized biological
system in the human brain. ANN consists of an interconnected assembly of models, with
functionality that is based on a neuron [9]. The analysis can be used as a standalone appli-
cation or as a complement to statistical analysis. This non-dynamic numerical model has
been used in many oceanographic [10–15] (and meteorological studies [16–18]. The ANN
technique is also useful for satellite-parameter retrievals [19–22]. Multiple linear regression
(MLR) is a method dealing with linear dependencies, whereas neural networks deal with
nonlinearities. If data has some nonlinear dependencies, neural networks outperform
the MLR approach. In addition, many studies have used statistical and machine-learning
techniques for cyclone studies because those techniques require less computing time. For
example, Swain et al. [9] concluded that the ANN approach gave a better result compared
to multiple linear-regression techniques (MLR) in the estimation of mixed-layer depth.
Sharma et al. [21] also demonstrated the benefits of the ANN technique over MLR. Hence,
we used the ANN approach in this study. ANN requires three sets of data: one for training,
another for verification, and a third for validation. The first dataset is used to train the
model, the second dataset is used to test the model for any shortcomings, and finally, the
validation dataset is used in statistical-parameter estimation. The validation dataset is
independent: it is not considered in developing the model. In an ANN model, both the
input and output variables are normalized to vary between 0 and 1. Popular ANN models
include radial-basis functions (RBF) and multilayer perceptions (MLP).

2. Date and Methodology
2.1. Data

Cyclone parameters available over the north Indian Ocean from IBTrACS (Interna-
tional Best Track Archive for Climate Stewardship, https://www.ncei.noaa.gov/data/
international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/) (ac-
cessed on 29 January 2021) during 1971–2019 are used in this analysis. IBTrACS provides
information on cyclones from different sources. Here, we use JTWC (Joint Typhoon Warn-
ing Center) data alone. These data contain latitude, longitude, surface central pressure,
and maximum wind speed of cyclones. Although these data are available both at 3- and
6-h intervals, we use only 6-h interval data in this study because the number of cases with
3-h intervals is much smaller. Based on availability, also used in this study are wind field
data from 1973 to 2019, pressure field data from 2001 to 2019, and position (latitude and
longitude) data from 1971 to 2019. It is better to have a large number of observations for
ANN analysis. If we consider only the period for which pressure fields are available, the
dataset would become smaller, so the errors would be larger. Hence, we consider the peri-
ods as they are available. However, a segmentation procedure (described later) is used to
increase the number of points for ANN analysis. After eliminating those cyclone positions
at irregular intervals, 323 cyclones are studied for position, 239 cyclones for wind speed,
and 104 cyclones for pressure. An ANN approach is used to forecast future position using
past cyclone observations. The tracks are segmented to provide the number of records
required by ANN. The selection of training, verification, and validation is described in the
next section.

2.2. Segmentation of the Tracks

ANN requires a large number of data records (i.e., sets of conditions for a specific
time) to develop the model. Since we do not have enough points if we consider the actual
cyclone points rather than just landfall points, each cyclone track has been divided into
different segments. A schematic representation of the procedure adopted for segmentation

https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/
https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/
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into a 24-h forecast with 6-h interval data is given in Figure 1. For example, for a 24-h
forecast if the present position (in terms of latitude and longitude) is at point 3 in Figure 1,
that position as well as the previous two six-hour positions (at 2 and 1) are considered as
the predictors, and the position at 7 after 24 h from the present position is taken as the
predictand. Thus, the positions for the predictors for this first segment are 1, 2, and 3, and
the predictand is 7 (pink line). For example, if the present position is at 18 h, locations
of 6, 12, and 18 h are the predictors (current and past positions), and the location at 18 h
(the next day) is the predictand (forecast position). Then, the second segment is moved to
position 2 after 6 h and, for the second segment, positions at 2, 3, and 4 are the predictors,
and position at 8 is the predictand (magenta line). Similarly, for segment 12, positions at 10,
11, and 12 are the predictors, and position at 16 is the predictand.

Figure 1. Division of cyclone tracks to various segments.

Since ANN requires three sets of data (one for training, another for verification, and
a third for validation), out of the total of 49 years of data on latitude and longitude from
1971 to 2019, 20 years from 1971 to 1990 are used for training, 17 years from 1991 to 2007 for
verification, and 12 years from 2008 to 2019 for validation. The same analysis is repeated
for cyclone wind speed and pressure. Since these three parameters have different periods,
the periods used for training, verification, and validation are also different, as reported in
Table 1. In this analysis, the Multi-Layer Perceptron (MLP) approach is used. The period of
study, the number of past hours used as predictors, and the hour of forecast as predictand,
as well as the total number of segments used for training, verification, and validation for
cyclone position, wind speed, and pressure, are given in Table 1. The first column in the
table indicates the past number of hours used as the predictors, and the second column
indicates the hours in advance for which the forecast is given as the predictand. Thus, a
forecasted time of 6 h using the past 6 h has the two past six hourly positions in addition to
the current position as predictors and the future 6 positions as predictands. As explained
earlier, the total number of points in each dataset depends on the type of segmentation and
the period of the data availability. Thus, the number of records decreases as the forecasted
time increases from 6 h to 24 h, besides the past number of hours used as predictors.

The land-crossing position of the cyclone track at the coastline has been computed
using ArcGIS software.
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Table 1. Number of sectors used to compute cyclone position, pressure, and wind speed.

Latitude/Longitude (Degrees)

Past Hours Used
for Prediction Forecasted Hour Total No.

of Sectors
No. of

Train Sectors
No. of Verifica-

tion Sectors
No. of

Validation Sectors

6 6 6245 2747 2165 1333

6 12 5923 2587 2072 1264

6 18 5602 2428 1979 1195

6 24 5283 2271 1886 1126

12 6 5923 2587 2072 1264

12 12 5602 2428 1979 1195

12 18 5283 2271 1886 1126

12 24 4967 2117 1793 1057

Years considered: 1971–1990 1991–2007 2008–2019

Wind Speed (Knots)

Past Hours Used
for Prediction Forecasted Hour Total No.

of Sectors
No. of

Train Sectors
No. of Verifica-

tion Sectors
No. of

Validation Sectors

6 6 4757 1268 2165 1324

6 12 4519 1191 2072 1256

6 18 4282 1115 1979 1188

6 24 4045 1039 1886 1120

12 6 4519 1191 2072 1256

12 12 4282 1115 1979 1188

12 18 4045 1039 1886 1120

12 24 3809 964 1793 1054

Years considered: 1973–1990 1991–2007 2008–2019

Pressure (hPa)

Past Hours Used
for Prediction Forecasted Hour Total No.

of Sectors
No. of

Train Sectors
No. of Verifica-

tion Sectors
No. of

Validation Sectors

6 6 2066 742 632 692

6 12 1962 706 599 657

6 18 1858 670 566 622

6 24 1754 634 533 587

12 6 1962 706 599 657

12 12 1858 670 566 622

12 18 1754 634 533 587

12 24 1650 598 500 552

Years considered: 2001–2007 2008–2013 2014–2019

3. Results and Discussion

The cyclone position in terms of latitude and longitude, pressure, and wind speed are esti-
mated from an ANN approach and compared with the observations in the following sections.

3.1. Comparison of the Position

Forecast of the cyclone position in terms of the latitude and longitude are predicted for
6, 12, 18, and 24 h in advance using the current position and 6- and 12-h past positions. The
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skill in prediction dropped if the forecast period is increased beyond 24 h. Thus, there are
two forecasts (latitude and longitude) for 6, 12, 18, and 24 h using 6- and 12-h past positions.
Thus, altogether there are eight forecasts. The forecast statistics are given separately for
the latitude and longitude in Table 2. Statistics for longitude are indicated in parenthesis.
The Pearson Correlation Coefficient (CC) for all forecasts for each of the three datasets
(training, testing, and validation) is greater than 0.97, which shows that the patterns of
change in the estimations are well-captured. Comparable values among the three datasets
for all statistical parameters indicate that they share similar characteristics. Further, the
Absolute Residual Mean (ARM) and Root Mean Square Error (RMSE) for longitude are
greater than those for latitude in all three dataset forecasts. This is because the longitude
values (ranging from 50 to 100 degrees) are greater than the latitude values (ranging from
0 to 25 degrees), because the correlation does not indicate goodness of fit but indicates
goodness of patterns of change (i.e., the change in the predicted variable is proportional to
the change in the comparison data). That proportionality could be way off and not impact
the correlation. Hence, emergency managers will probably find the RMSE value more
useful than the correlation.

The Mean Distance Error (MDE) between the observed and predicted positions are
computed using 6- and 12-h past positions for the lead hours of 6, 12, 18, and 24. Thus,
altogether eight forecasts are given, as shown in Figure 2. This error, for all the cyclones
together, varies from 30.7 km (06P06F) to 151.7 km (12P24F). For example, the mean distance
error for the 6-h past positions (as input) and 24-h lead position (as the output) is 139.14 km
(06P24F in Figure 2). Ali et al. [8] reported an MDE of 137.5 km using ANN and 182.5 km
using the CLIPER approach [23,24] for the same 6-h past positions (as input) and 24-h
lead position (as the output). Hence, we do not repeat the comparison of the track errors
from the ANN approach and CLIPER in this paper. The MDE between the best track and
predicted tracks are almost the same for 6-h ANN forecasts, based on a 6-h lead time and a
12-h lead time.

Figure 2. Mean Distance Error (MDE) for the different time periods with 6-h and 12-h past positions
with 6-h interval data.
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Table 2. The statistical parameters for Absolute Residual Mean (ARM), Root Mean Square Error (RMSE), Correlation Coefficient (CC) for Latitude (Longitude), and
Scatter Index (SI), as well as wind speed and pressure.

Latitude (Longitude)

Forecast Time
Training Verification Validation

ARM RMSE CC ARM RMSE CC ARM RMSE CC

06P 06F 0.1266
(0.1629)

0.1777
(0.2539)

0.9994
(0.9997)

0.1384
(0.1533)

0.1991
(0.2175)

0.9993
(0.9998)

0.1671
(0.1902)

0.2393
(0.275)

0.9983
(0.9998)

06P 12F 0.2918
(0.4009)

0.3999
(0.5954)

0.9971
(0.9983)

0.3228
(0.3699)

0.4450
(0.5056)

0.9967
(0.9991)

0.3395
(0.4144)

0.4676
(0.579)

0.9938
(0.9991)

06P 18F 0.4771
(0.666)

0.6397
(0.9475)

0.9926
(0.9959)

0.528
(0.6086)

0.7085
(0.823)

0.9913
(0.9975)

0.5275
(0.672)

0.7027
(0.9164)

0.9859
(0.9979)

06P 24F 0.6583
(0.9402)

0.8664
(1.2806)

0.9864
(0.9925)

0.7226
(0.8784)

0.9641
(1.1591)

0.9838
(0.9953)

0.7261
(0.8954)

0.9595
(1.1786)

0.9737
(0.9965)

12P 06F 0.1288
(0.1677)

0.1790
(0.2503)

0.9994
(0.9997)

0.1431
(0.1699)

0.2047
(0.2443)

0.9992
(0.9997)

0.1694
(0.2132)

0.2413
(0.3113)

0.9983
(0.9997)

12P 12F 0.3009
(0.4389)

0.4078
(0.6262)

0.997
(0.9982)

0.3596
(0.4167)

0.4901
(0.5747)

0.9962
(0.9988)

0.3448
(0.4465)

0.4739
(0.601)

0.9938
(0.9991)

12P 18F 0.475
(0.6524)

0.6269
(0.9026)

0.9929
(0.9963)

0.5376
(0.6428)

0.7203
(0.8551)

0.9913
(0.9975)

0.535
(0.6629)

0.7107
(0.8856)

0.9858
(0.998)

12P 24F 0.6718
(1.0006)

0.8799
(1.3312)

0.9861
(0.9921)

0.7994
(0.9636)

1.0478
(1.2746)

0.9818
(0.9945)

0.7411
(1.0243)

0.9716
(1.3324)

0.9742
(0.996)

Wind Speed (Knots)

Forecast Time
Training Verification Validation

ARM RMSE S I CC ARM RMSE S I CC ARM RMSE S I CC

06P 06F 3.085 4.2322 0.0996 0.9772 3.2571 4.8692 0.1287 0.9735 3.5398 5.0605 0.11 0.9795

06P 12F 5.0849 7.0811 0.164 0.9365 5.6212 8.2533 0.2143 0.9233 6.4378 9.1879 0.1959 0.9327

06P 18F 7.0698 9.7056 0.2218 0.8801 7.6532 11.174 0.2854 0.8578 9.03 12.903 0.2702 0.8653

06P 24F 8.8106 11.931 0.2694 0.8174 9.5734 13.864 0.3488 0.7762 11.591 16.175 0.333 0.7849

12P 06F 3.0419 4.2051 0.0974 0.978 3.2997 4.8726 0.1265 0.9739 3.5699 5.1055 0.1088 0.9797

12P 12F 5.0169 7.0494 0.1611 0.9387 5.6424 8.2383 0.2104 0.9252 6.3792 9.1725 0.1921 0.9349

12P 18F 6.9808 9.7024 0.2191 0.8835 7.6686 11.218 0.2822 0.8598 9.1124 13.035 0.2684 0.8668

12P 24F 8.7629 11.952 0.2669 0.8224 9.5918 13.858 0.3438 0.7826 11.78 16.425 0.3329 0.7862



Atmosphere 2022, 13, 1157 7 of 13

Table 2. Cont.

Pressure (hPa)

Forecast Time
Training Verification Validation

ARM RMSE S I CC ARM RMSE S I CC ARM RMSE S I CC

06P 06F 2.2318 3.8428 0.0038 0.9717 2.6246 4.161 0.0041 0.9674 3.4215 4.946 0.005 0.9665

06P 12F 3.7496 5.9774 0.006 0.9326 4.7196 7.1908 0.0072 0.9018 6.0367 8.4201 0.0085 0.9024

06P 18F 5.4029 8.5577 0.0086 0.8612 6.3798 9.7563 0.0098 0.8168 8.1882 11.266 0.0114 0.8221

06P 24F 6.6066 10.307 0.0103 0.7993 8.0948 12.076 0.0122 0.7242 9.9595 13.661 0.0138 0.7426

12P 06F 2.2772 3.7356 0.0037 0.9741 2.6854 4.2219 0.0042 0.9671 3.5482 5.0836 0.0051 0.9654

12P 12F 3.8243 6.1372 0.0061 0.9314 4.56 7.2014 0.0072 0.9034 6.0451 8.4673 0.0085 0.9034

12P 18F 5.4258 8.5138 0.0085 0.8683 6.285 9.6772 0.0097 0.8299 8.136 11.327 0.0114 0.8297

12P 24F 6.6914 10.437 0.0105 0.8047 8.0294 11.953 0.012 0.7341 9.8206 13.467 0.0136 0.7548
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The error increases from 6-h forecast (30.68 Km) to 24-h forecast (139.14 km) for 6-h
interval data by considering the 6-h past positions. Similarly, the error increases from 6-h
forecast (32.99 km) to 24-h forecast (151.68 km) by considering the 12-h past positions.
From the validation dataset, four cyclones that do not have a straight path (Phet, Madi,
Gaja, and Maha) are randomly selected. A comparison of the best track and the predicted
track for these four cyclones is shown in Figure 3. First, the very severe cyclonic storm,
Phet (31 May to 6 June 2010) (Figure 3a), initially moved northwestward, then curved
after passing over the land, and moved northeastward. The ANN’s predicted track very
nearly followed this best track, with an MDE of 82.5 km. Another very severe cyclonic
storm, Madi (5–12 December 2013) (Figure 3b), re-tracked after moving northeastward,
and the predicted track is similar to the best track, with an MDE of 53.1 km. This is the least
among the four cyclones studied. Gaja, another severe cyclonic storm (11–18 November
2018), began its track by looping almost back to its starting position in the Bay of Bengal,
then it crossed the Indian landmass and moved over the Arabian Sea, with an MDE of
75 km. In addition, finally, the extremely severe cyclonic storm, Maha (30 October to
6 November 2019), has the largest MDE of 87.8 km. The errors are large in the beginning
but reduce as the storm progresses. The only reason we could find for the sudden changes
in direction of the Maha cyclone is that its speed varied significantly during its course. The
minimum and maximum distances it traveled in 6 h are 9.97 km and 244.55 km, respectively.
Atlantic Ocean storms that change in speed are typically associated with storms undergoing
extratropical transition, but that is not normally a consideration for Indian Ocean storms.
Other than this extreme (and, hence, hard to train for) change in speed, we could not find
any other reason for the large deviations of the predicted track from the best track of the
Maha cyclone. We also plotted (figures not shown) the predicted and best tracks for which
the MDE is the minimum (33.45 km) and maximum (120.2 km). The difference between
the predicted and the best track for the maximum MDE is much less than that for the
Maha cyclone.

3.2. Estimation of Wind Speed

Statistical parameters such as ARM, RMSE, SI (Scatter Index), and CC for all eight
forecast combinations for training, verification, and validation are given in Table 2. The CC
is more than 0.78 for all estimations of the validation dataset. The RMSE varies between
5 and 16 knots depending upon the lead time. The SI, which is one of the best statistical
parameters to interpret any estimation, varies between ~0.1 for a 6-h advance prediction to
~0.3 for a 24-h advance prediction for the validation dataset (Table 2 and Figure 4a). The
values increase with the lead time, and this increase is the same irrespective of the past
number of 6 or 12 h.

3.3. Estimation of Pressure

Estimation of pressure fields of tropical cyclones is a major problem. The statistical
parameters in the estimation of pressure for all eight forecast combinations are given in
Table 2. The RMSE for the validation dataset varies from 4.9 hPa to 13.7 hPa, with the
error increasing with the lead time. The errors are large, as the absolute values themselves
are large (on the order of 1000 hPa). Purnachand et al. [25], utilizing the University of
Washington Planetary Boundary Layer (UWPBL) model of Patoux et al. [26], estimated
the pressure in cyclone Nilam using Ocean Sat-II Scatterometer wind fields. This model
has an option providing the background-pressure values. The RMSE from this model is
4.97 hPa if a standard pressure of 1013 hPa was given, however, the error was reduced to
0.67 hPa when the pressure values of all available buoys were utilized. The estimations by
Purnachand et al. [25] are a better comparative to ours because they used in situ pressure
values as initial conditions. However, our estimations are comparable with theirs, when
using a standard pressure value of 1013 hPa.
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Figure 3. A comparison of the best track from JTWC (blue colour) and the predicted tracks from
ANN (red colour) of the cyclones during (a) 31 May–6 June 2010 (Very Severe Cyclonic Storm Phet);
(b) 5–12 December 2013 (Very Severe Cyclonic Storm Madi); (c) 11–18 November 2018 (Very Severe
Cyclonic Storm Gaja); and (d) 30 October–6 November 2019 (Extremely Severe Cyclonic Storm Maha).
(Note: S indicates the starting point, and E indicates the ending point).

The SI is very small for all of the eight datasets, varying between 0.0050 and 0.0138 for
the validation dataset. The SIs using the 6-h past position and the 12-h past position are
shown in Figure 4b. The values increase with the forecast lead time, and this increase is
the same irrespective of the past number of 6 or 12 h. In addition to computing the SI, we
estimated the skill score (SS) following Murphy [27] (Equation. 3), where the MLR results
were considered as the reference. The SS here is 3.9%.

3.4. Land-Crossing-Point Difference

The difference between the land-crossing points indicated by the JTWC’s best tracks
and the ANN’s predicted tracks are given in Table 3, for the 12-h past positions as the
predictors and the 12-h and 24-h forecasts’ positions as the predictants. For 12-h predictions,
the minimum error is 3.8 km, and the maximum error is 124.8 km with a mean value of
38.2 km. In addition, for 24-h forecasts, the minimum error is 0.26 km, and the maximum
error is 192.56 km with a mean value of 71.2 km. Mohapatra et al. [28] evaluated the official
landfall forecasts by the India Meteorological Department during 2003–2013 for different
forecast times ranging from 12 to 72 h. Their average landfall-point-forecast errors are
69 km and 104 km for 12- and 24-h forecasts. During our analysis period of 1971–2019, the
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average errors are 38 km and 71 km for 12-h and 24-h forecasts, respectively, which are
significantly less than those reported by Mohapatra et al. [28].

Figure 4. Scatter Index (SI) of (a) wind speed and (b) pressure for the different lead times of 6 and
12 h and with past 6-h interval data. Note: ‘xxP yyF’ means xx past hours and yy forecast hour.

Table 3. Land-crossing difference between the best tracks and ANN’s predicted tracks.

12 h Past 12-h Forecast 12 h Past 24-h Forecast

Sl No. Year-Cyclone No. Length (km) Sl No. Year-Cyclone No. Length (km)

1 2008–66 43.72 1 2008–95 18.06

2 2008–90 6.19 2 2009–26 48.47

3 2008–95 24.62 3 2010–24 159.47

4 2009–26 17.61 4 2010–80 50.51

5 2009–64 8.92 5 2011–94 49.77

6 2009–89 61.13 6 2012–81 87.88

7 2010–24 42.4 7 2012–84 62.61

8 2010–80 5.94 8 2013–75 43.31

9 2011–94 33.79 9 2013–93 192.56

10 2012–81 10.61 10 2013–94 38.68

11 2012–84 17.9 11 2014–75 66.58

12 2013–75 14.18 12 2016–91 70.06

13 2013–93 51.31 13 2016–92 66.05

14 2013–94 35.76 14 2018–93 79.98

15 2013–99 79.99 15 2018–102 43.73

16 2014–75 34.29 16 2018–105 129.32

17 2016–91 19.35 17 2019–87 0.26

18 2016–92 14.83

19 2018–82 89.1 Mean 71.02

20 2018–93 48.78 Max 192.56

21 2018–102 3.8 Min 0.26

22 2018–105 80.42

23 2019–21 47.56

24 2019–87 124.8

Mean 38.21

Max 124.8

Min 3.8
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4. Summary and Conclusions

In this study, an ANN approach is used to predict the cyclone parameters, specifically
the position in terms of latitude and longitude, wind speed, and pressure. ANN or other
machine approaches are less computationally intense than operational numerical weather-
predication models. The predicted track is used to estimate the landfall point. After
a quality check, 323 cyclones are used for position, 239 cyclones for wind speed, and
104 cyclones for pressure. Since ANN requires a large amount of data, each cyclone has
been divided into segments to increase the number of points. Altogether, eight forecast
combinations are studied with input from the past 6 and 12 h, each of these past hours
having predictions for 6, 12, 18, and 24 h.

The RMSE (which is more relevant to emergency managers) is greater for longitude
than for latitude. The MDE increases with the lead time in both 6- and 12-h past positions.
A comparison of the best track from JTWC and the ANN’s predicted track for the four
cyclones randomly selected from the validation dataset match satisfactorily, as described
below. The four cyclones selected have different tracks such as looped, curved, and re-
tracked. The MDE of these four cyclones varies between 53.1 km and 87.8 km.

The SI of wind speed for the validation dataset varies between 0.11 and 0.33, with a
CC of more than 0.7 being quite acceptable. As with the position predictions, the SI for the
wind speed increases with lead time. Further, whether using the past 6 h or 12 h, the errors
remain close to the same.

The SI for the pressure estimation of the validation dataset is negligible, varying
from 0.005 to 0.01, with a correlation of more than 0.7. The high values of RMSE are
understandable because the pressure values are in the range of 1000 hPa. As in the case of
the previous two parameters, the SI increases with lead time and remains similar for the
past 6- and past 12-h predictions.

The difference between the JTWC’s best track and ANN’s predictions for landfall-
crossing points has a mean error of 38.4 km for the 12-h forecast and 71.02 km for the
24-h forecast; both are significantly less than the official Indian weather-forecast errors.
We compared the ANN forecasts with seven dynamical model outputs for 21 cyclones
during 2017–2019. Our findings show that an ANN approach outperformed all the nu-
merical models. However, during 2019, ANN results were better than three models but
worse than four models. Incidentally, cyclone Maha, with the largest track error, occurred
during 2019. By analyzing the 33 cyclones in the north Indian Ocean during 2003–2013,
Mohapatra et al. [28] obtained an average error of 69 km for 12-h forecasts and 104 km for
24-h forecasts. Compared to these errors, the errors obtained by the ANN’s predictions
are far better. However, Mohapatra et al. [28] were able to predict 72 h in advance, which
could not be done in this paper. Since advance notice is critical, the error of 71.02 km needs
to be considered.

In the future, we plan to consider either a multiple numerical-model output or output
from the same model with different initial conditions to develop an ANN technique for
predicting a cyclone’s track.
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